Papers
Topics
Authors
Recent
2000 character limit reached

Bayesian Conditioned Diffusion Models for Inverse Problems

Published 14 Jun 2024 in cs.CV, cs.AI, and cs.LG | (2406.09768v1)

Abstract: Diffusion models have recently been shown to excel in many image reconstruction tasks that involve inverse problems based on a forward measurement operator. A common framework uses task-agnostic unconditional models that are later post-conditioned for reconstruction, an approach that typically suffers from suboptimal task performance. While task-specific conditional models have also been proposed, current methods heuristically inject measured data as a naive input channel that elicits sampling inaccuracies. Here, we address the optimal conditioning of diffusion models for solving challenging inverse problems that arise during image reconstruction. Specifically, we propose a novel Bayesian conditioning technique for diffusion models, BCDM, based on score-functions associated with the conditional distribution of desired images given measured data. We rigorously derive the theory to express and train the conditional score-function. Finally, we show state-of-the-art performance in image dealiasing, deblurring, super-resolution, and inpainting with the proposed technique.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.