Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Cost and Complexity of Minimizing Envy in House Allocation (2406.09744v1)

Published 14 Jun 2024 in cs.GT

Abstract: We study almost-envy-freeness in house allocation, where $m$ houses are to be allocated among $n$ agents so that every agent receives exactly one house. An envy-free allocation need not exist, and therefore we may have to settle for relaxations of envy-freeness. But typical relaxations such as envy-free up to one good do not make sense for house allocation, as every agent is required to receive exactly one house. Hence we turn to different aggregate measures of envy as markers of fairness. In particular, we define the amount of envy experienced by an agent $a$ w.r.t. an allocation to be the number of agents that agent $a$ envies under that allocation. We quantify the envy generated by an allocation using three different metrics: 1) the number of agents who are envious; 2) the maximum amount of envy experienced by any agent; and 3) the total amount of envy experienced by all agents, and look for allocations that minimize one of the three metrics. We thus study three computational problems corresponding to each of the three metrics and prove a host of algorithmic and hardness results. We also suggest practical approaches for these problems via integer linear program (ILP) formulations and report the findings of our experimental evaluation of ILPs. Finally, we study the price of fairness (PoF), which quantifies the loss of welfare we must suffer due to the fairness requirements, and we prove a number of results on PoF, including tight bounds as well as algorithms that simultaneously optimize both welfare and fairness.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets