Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sagiri: Low Dynamic Range Image Enhancement with Generative Diffusion Prior (2406.09389v1)

Published 13 Jun 2024 in eess.IV and cs.CV

Abstract: Capturing High Dynamic Range (HDR) scenery using 8-bit cameras often suffers from over-/underexposure, loss of fine details due to low bit-depth compression, skewed color distributions, and strong noise in dark areas. Traditional LDR image enhancement methods primarily focus on color mapping, which enhances the visual representation by expanding the image's color range and adjusting the brightness. However, these approaches fail to effectively restore content in dynamic range extremes, which are regions with pixel values close to 0 or 255. To address the full scope of challenges in HDR imaging and surpass the limitations of current models, we propose a novel two-stage approach. The first stage maps the color and brightness to an appropriate range while keeping the existing details, and the second stage utilizes a diffusion prior to generate content in dynamic range extremes lost during capture. This generative refinement module can also be used as a plug-and-play module to enhance and complement existing LDR enhancement models. The proposed method markedly improves the quality and details of LDR images, demonstrating superior performance through rigorous experimental validation. The project page is at https://sagiri0208.github.io

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub