Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Precise analysis of ridge interpolators under heavy correlations -- a Random Duality Theory view (2406.09199v1)

Published 13 Jun 2024 in stat.ML, cs.IT, cs.LG, math.IT, math.ST, and stat.TH

Abstract: We consider fully row/column-correlated linear regression models and study several classical estimators (including minimum norm interpolators (GLS), ordinary least squares (LS), and ridge regressors). We show that \emph{Random Duality Theory} (RDT) can be utilized to obtain precise closed form characterizations of all estimators related optimizing quantities of interest, including the \emph{prediction risk} (testing or generalization error). On a qualitative level out results recover the risk's well known non-monotonic (so-called double-descent) behavior as the number of features/sample size ratio increases. On a quantitative level, our closed form results show how the risk explicitly depends on all key model parameters, including the problem dimensions and covariance matrices. Moreover, a special case of our results, obtained when intra-sample (or time-series) correlations are not present, precisely match the corresponding ones obtained via spectral methods in [6,16,17,24].

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Mihailo Stojnic (68 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.