Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Operator-informed score matching for Markov diffusion models (2406.09084v1)

Published 13 Jun 2024 in stat.ML and cs.LG

Abstract: Diffusion models are typically trained using score matching, yet score matching is agnostic to the particular forward process that defines the model. This paper argues that Markov diffusion models enjoy an advantage over other types of diffusion model, as their associated operators can be exploited to improve the training process. In particular, (i) there exists an explicit formal solution to the forward process as a sequence of time-dependent kernel mean embeddings; and (ii) the derivation of score-matching and related estimators can be streamlined. Building upon (i), we propose Riemannian diffusion kernel smoothing, which ameliorates the need for neural score approximation, at least in the low-dimensional context; Building upon (ii), we propose operator-informed score matching, a variance reduction technique that is straightforward to implement in both low- and high-dimensional diffusion modeling and is demonstrated to improve score matching in an empirical proof-of-concept.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets