Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond the Calibration Point: Mechanism Comparison in Differential Privacy (2406.08918v2)

Published 13 Jun 2024 in cs.CR, cs.AI, cs.LG, math.ST, stat.ML, and stat.TH

Abstract: In differentially private (DP) machine learning, the privacy guarantees of DP mechanisms are often reported and compared on the basis of a single $(\varepsilon, \delta)$-pair. This practice overlooks that DP guarantees can vary substantially even between mechanisms sharing a given $(\varepsilon, \delta)$, and potentially introduces privacy vulnerabilities which can remain undetected. This motivates the need for robust, rigorous methods for comparing DP guarantees in such cases. Here, we introduce the $\Delta$-divergence between mechanisms which quantifies the worst-case excess privacy vulnerability of choosing one mechanism over another in terms of $(\varepsilon, \delta)$, $f$-DP and in terms of a newly presented Bayesian interpretation. Moreover, as a generalisation of the Blackwell theorem, it is endowed with strong decision-theoretic foundations. Through application examples, we show that our techniques can facilitate informed decision-making and reveal gaps in the current understanding of privacy risks, as current practices in DP-SGD often result in choosing mechanisms with high excess privacy vulnerabilities.

Citations (1)

Summary

We haven't generated a summary for this paper yet.