2000 character limit reached
On the number of zeros of $\mathop{\mathcal R}(s)$ (2406.08890v1)
Published 13 Jun 2024 in math.NT
Abstract: We prove that the number of zeros $\varrho=\beta+i\gamma$ of $\mathop{\mathcal R}(s)$ with $0<\gamma\le T$ is given by [N(T)=\frac{T}{4\pi}\log\frac{T}{2\pi}-\frac{T}{4\pi}-\frac12\sqrt{\frac{T}{2\pi}}+O(T{2/5}\log2 T).] Here $\mathop{\mathcal R}(s)$ is the function that Siegel found in Riemann's papers. Siegel related the zeros of $\mathop{\mathcal R}(s)$ to the zeros of Riemann's zeta function. Our result on $N(T)$ improves the result of Siegel.