Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PixMamba: Leveraging State Space Models in a Dual-Level Architecture for Underwater Image Enhancement (2406.08444v1)

Published 12 Jun 2024 in cs.CV

Abstract: Underwater Image Enhancement (UIE) is critical for marine research and exploration but hindered by complex color distortions and severe blurring. Recent deep learning-based methods have achieved remarkable results, yet these methods struggle with high computational costs and insufficient global modeling, resulting in locally under- or over- adjusted regions. We present PixMamba, a novel architecture, designed to overcome these challenges by leveraging State Space Models (SSMs) for efficient global dependency modeling. Unlike convolutional neural networks (CNNs) with limited receptive fields and transformer networks with high computational costs, PixMamba efficiently captures global contextual information while maintaining computational efficiency. Our dual-level strategy features the patch-level Efficient Mamba Net (EMNet) for reconstructing enhanced image feature and the pixel-level PixMamba Net (PixNet) to ensure fine-grained feature capturing and global consistency of enhanced image that were previously difficult to obtain. PixMamba achieves state-of-the-art performance across various underwater image datasets and delivers visually superior results. Code is available at: https://github.com/weitunglin/pixmamba.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com