Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the equivalence of quasirandomness and exchangeable representations independent from lower-order variables (2406.08195v1)

Published 12 Jun 2024 in math.CO

Abstract: It is often convenient to represent a process for randomly generating a graph as a graphon. (More precisely, these give \emph{vertex exchangeable} processes -- those processes in which each vertex is treated the same way.) Other structures can be treated by generalizations like hypergraphons, permutatons, and, for a very general class, theons. These representations are not unique: different representations can lead to the same probability distribution on graphs. This naturally leads to questions (going back at least to Hoover's proof of the Aldous--Hoover Theorem on the existence of such representations) that ask when quasirandomness properties on the distribution guarantee the existence of particularly simple representations. We extend the usual theon representation by adding an additional datum of a random permutation to each tuple, which we call a $\ast$-representation. We show that if a process satisfies the \emph{unique coupling} property UCouple[$\ell$], which says roughly that all $\ell$-tuples of vertices ``look the same'', then the process is $\ast$-$\ell$-independent: there is a $\ast$-representation that does not make use of any random information about $\ell$-tuples (including tuples of length $<\ell$). Simple examples show that the use of $\ast$-representations is necessary. This resolves a question of Coregliano and Razborov, since it easily follows that UCouple[l] implies Independence\ell' for $\ell'<\ell$.

Summary

We haven't generated a summary for this paper yet.