Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inverse scattering transform for the defocusing-defocusing coupled Hirota equations with non-zero boundary conditions: double-pole solutions (2406.08189v1)

Published 12 Jun 2024 in nlin.SI

Abstract: The inverse scattering transform for the defocusing-defocusing coupled Hirota equations with non-zero boundary conditions at infinity is thoroughly discussed. We delve into the analytical properties of the Jost eigenfunctions and scrutinize the characteristics of the scattering coefficients. To enhance our investigation of the fundamental eigenfunctions, we have derived additional auxiliary eigenfunctions with the help of the adjoint problem. Two symmetry conditions are studied to constrain the behavior of the eigenfunctions and scattering coefficients. Utilizing these symmetries, we precisely delineate the discrete spectrum and establish the associated symmetries of the scattering data. By framing the inverse problem within the context of the Riemann-Hilbert problem, we develop suitable jump conditions to express the eigenfunctions. Consequently, we deduce the pure soliton solutions from the defocusing-defocusing coupled Hirota equations, and the double-poles solutions are provided explicitly for the first time in this work.

Citations (1)

Summary

We haven't generated a summary for this paper yet.