Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shape-Constrained Distributional Optimization via Importance-Weighted Sample Average Approximation (2406.07825v1)

Published 12 Jun 2024 in math.OC and stat.ME

Abstract: Shape-constrained optimization arises in a wide range of problems including distributionally robust optimization (DRO) that has surging popularity in recent years. In the DRO literature, these problems are usually solved via reduction into moment-constrained problems using the Choquet representation. While powerful, such an approach could face tractability challenges arising from the geometries and the compatibility between the shape and the objective function and moment constraints. In this paper, we propose an alternative methodology to solve shape-constrained optimization problems by integrating sample average approximation with importance sampling, the latter used to convert the distributional optimization into an optimization problem over the likelihood ratio with respect to a sampling distribution. We demonstrate how our approach, which relies on finite-dimensional linear programs, can handle a range of shape-constrained problems beyond the reach of previous Choquet-based reformulations, and entails vanishing and quantifiable optimality gaps. Moreover, our theoretical analyses based on strong duality and empirical processes reveal the critical role of shape constraints in guaranteeing desirable consistency and convergence rates.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com