Papers
Topics
Authors
Recent
Search
2000 character limit reached

Automatic detection of large-scale flux ropes and their geoeffectiveness with a machine learning approach

Published 12 Jun 2024 in astro-ph.SR | (2406.07798v1)

Abstract: Detecting large-scale flux ropes (FRs) embedded in interplanetary coronal mass ejections (ICMEs) and assessing their geoeffectiveness are essential since they can drive severe space weather. At 1 au, these FRs have an average duration of 1 day. Their most common magnetic features are large, smoothly rotating magnetic fields. Their manual detection has become a relatively common practice over decades, although visual detection can be time-consuming and subject to observer bias. Our study proposes a pipeline that utilizes two supervised binary-classification ML models trained with solar wind magnetic properties to automatically detect large-scale FRs and additionally determine their geoeffectiveness. The first model is used to generate a list of auto-detected FRs. Using the properties of southward magnetic field the second model determines the geoeffectiveness of FRs. Our method identifies 88.6\% and 80\% large-scale ICMEs (duration $\ge 1$ day) observed at 1 au by Wind and Sun Earth Connection Coronal and Heliospheric Investigation (STEREO) mission, respectively. While testing with a continuous solar wind data obtained from Wind, our pipeline detected 56 of the 64 large-scale ICMEs during 2008 - 2014 period (recall= 0.875) but many false positives (precision= 0.56) as we do not take into account any additional solar wind properties than the magnetic properties. We found an accuracy of 0.88 when estimating the geoeffectiveness of the auto-detected FRs using our method. Thus, in space weather now-casting and forecasting at L1 or any planetary missions, our pipeline can be utilized to offer a first-order detection of large-scale FRs and geoeffectiveness.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.