Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Back to the Color: Learning Depth to Specific Color Transformation for Unsupervised Depth Estimation (2406.07741v6)

Published 11 Jun 2024 in cs.CV

Abstract: Virtual engines can generate dense depth maps for various synthetic scenes, making them invaluable for training depth estimation models. However, discrepancies between synthetic and real-world colors pose significant challenges for depth estimation in real-world scenes, especially in complex and uncertain environments encountered in unsupervised monocular depth estimation tasks. To address this issue, we propose Back2Color, a framework that predicts realistic colors from depth using a model trained on real-world data, thus transforming synthetic colors into their real-world counterparts. Additionally, we introduce the Syn-Real CutMix method for joint training with both real-world unsupervised and synthetic supervised depth samples, enhancing monocular depth estimation performance in real-world scenes. Furthermore, to mitigate the impact of non-rigid motions on depth estimation, we present an auto-learning uncertainty temporal-spatial fusion method (Auto-UTSF), which leverages the strengths of unsupervised learning in both temporal and spatial dimensions. We also designed VADepth, based on the Vision Attention Network, which offers lower computational complexity and higher accuracy than transformers. Our Back2Color framework achieves state-of-the-art performance on the Kitti dataset, as evidenced by improvements in performance metrics and the production of fine-grained details. This is particularly evident on more challenging datasets such as Cityscapes for unsupervised depth estimation.

Summary

We haven't generated a summary for this paper yet.