Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimates of automorphic forms on $\mathrm{SU}(n,1)$ (2406.07639v1)

Published 11 Jun 2024 in math.CV and math.NT

Abstract: For $n\geq 2$, let $\Gamma\subset \mathrm{SU}((n,1),\mathcal{O}{K})$ be a torsion-free, finite-index subgroup, where $\mathcal{O}_K$ denotes the ring of integers of a totally imaginary number field $K$ of degree $2$. Let $\mathbb{B}n$ denote the $n$-dimensional complex ball endowed with the hyperbolic metric, and let $X{\Gamma}:=\Gamma\backslash \mathbb{B}n$ denote the quotient space. Furthermore, let $\mu_{\mathrm{hyp}}{\mathrm{vol}}$ denote the volume form associated to the hyperbolic metric. Let $\Lambda:=\Omega_{\overline{X}{\Gamma}}{n}$ denote the line bundle, where $\overline{X}{\Gamma}:=X_{\Gamma}\cup\lbrace \infty\rbrace$. For any $k\geq 1$, let $\lambda{k}:=\Lambda{\otimes k}\otimes O_{\overline{X}{\Gamma}}((k-1)\infty)$. For any $k\geq 1$, the hyperbolic metric induces a point-wise metric on $H{0}(\overline{X}{\Gamma},\lambda{k})$. For any $k\geq 1$, let $\mathcal{B}{X{\Gamma}}{\lambda{k}}$ denote the Bergman kernel associated $H{0}(\overline{X}_{\Gamma},\lambda{k})$. Then, for $k\gg1$, the first main result of the article, is the following estimate $$ \sup_{z\in \overline{X}{\Gamma}}\big|\mathcal{B}{X_{\Gamma}}{\lambda{k}}(z,z)\big|{\mathrm{hyp}}=O{X_{\Gamma}}(k{n+1/2}), $$ where the implied constant depends only on $X_{\Gamma}$. For any $k\geq 1$, and $z\in X_{\Gamma}$, let $\mu_{\mathrm{Ber},k}(z)$ denote the Bergman metric associated to the line bundle $\lambda{ k}$, and let $\mu_{\mathrm{ber},k}{\mathrm{vol}}$ denote the associated volume form. Then, for $k\gg1$, the second main result of the article is the following estimate $$ \sup_{z\in \overline{X}{\Gamma}}\bigg|\frac{\mu{\mathrm{Ber},k}{\mathrm{vol}}(z)}{\mu_{\mathrm{hyp}}{\mathrm{vol}}(z)}\bigg|=O_{X_{\Gamma}}\big(k{4n-1} \big), $$ where the implied constant depends only on $X_{\Gamma}$.

Summary

We haven't generated a summary for this paper yet.