Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interpolating between Hausdorff and box dimension (2406.07527v1)

Published 11 Jun 2024 in math.MG, math.CA, and math.DS

Abstract: Hausdorff and box dimension are two familiar notions of fractal dimension. Box dimension can be larger than Hausdorff dimension, because in the definition of box dimension, all sets in the cover have the same diameter, but for Hausdorff dimension there is no such restriction. This thesis focuses on a family of dimensions parameterised by $\theta \in (0,1)$, called the intermediate dimensions, which are defined by requiring that $\mbox{diam}(U) \leq (\mbox{diam}(V)){\theta}$ for all sets $U,V$ in the cover. We begin by generalising the intermediate dimensions to allow for greater refinement in how the relative sizes of the covering sets are restricted. These new dimensions can recover the interpolation between Hausdorff and box dimension for compact sets whose intermediate dimensions do not tend to the Hausdorff dimension as $\theta \to 0$. We also use a Moran set construction to prove a necessary and sufficient condition, in terms of Dini derivatives, for a given function to be realised as the intermediate dimensions of a set. We proceed to prove that the intermediate dimensions of limit sets of infinite conformal iterated function systems are given by the maximum of the Hausdorff dimension of the limit set and the intermediate dimensions of the set of fixed points of the contractions. This applies to sets defined using continued fraction expansions, and has applications to dimensions of projections, fractional Brownian images, and general H\"older images. Finally, we determine a formula for the intermediate dimensions of all self-affine Bedford-McMullen carpets. The functions display features not witnessed in previous examples, such as having countably many phase transitions. We deduce that two carpets have equal intermediate dimensions if and only if the multifractal spectra of the corresponding uniform Bernoulli measures coincide.

Citations (1)

Summary

We haven't generated a summary for this paper yet.