Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SemlaFlow -- Efficient 3D Molecular Generation with Latent Attention and Equivariant Flow Matching (2406.07266v3)

Published 11 Jun 2024 in cs.LG, cs.AI, and cs.NE

Abstract: Methods for jointly generating molecular graphs along with their 3D conformations have gained prominence recently due to their potential impact on structure-based drug design. Current approaches, however, often suffer from very slow sampling times or generate molecules with poor chemical validity. Addressing these limitations, we propose Semla, a scalable E(3)-equivariant message passing architecture. We further introduce an unconditional 3D molecular generation model, SemlaFlow, which is trained using equivariant flow matching to generate a joint distribution over atom types, coordinates, bond types and formal charges. Our model produces state-of-the-art results on benchmark datasets with as few as 20 sampling steps, corresponding to a two order-of-magnitude speedup compared to state-of-the-art. Furthermore, we highlight limitations of current evaluation methods for 3D generation and propose new benchmark metrics for unconditional molecular generators. Finally, using these new metrics, we compare our model's ability to generate high quality samples against current approaches and further demonstrate SemlaFlow's strong performance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.