Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sensitivity Analysis for the Test-Negative Design (2406.06980v1)

Published 11 Jun 2024 in stat.ME

Abstract: The test-negative design has become popular for evaluating the effectiveness of post-licensure vaccines using observational data. In addition to its logistical convenience on data collection, the design is also believed to control for the differential health-care-seeking behavior between vaccinated and unvaccinated individuals, which is an important while often unmeasured confounder between the vaccination and infection. Hence, the design has been employed routinely to monitor seasonal flu vaccines and more recently to measure the COVID-19 vaccine effectiveness. Despite its popularity, the design has been questioned, in particular about its ability to fully control for the unmeasured confounding. In this paper, we explore deviations from a perfect test-negative design, and propose various sensitivity analysis methods for estimating the effect of vaccination measured by the causal odds ratio on the subpopulation of individuals with good health-care-seeking behavior. We start with point identification of the causal odds ratio under a test-negative design, considering two forms of assumptions on the unmeasured confounder. These assumptions then lead to two approaches for conducting sensitivity analysis, addressing the influence of the unmeasured confounding in different ways. Specifically, one approach investigates partial control for unmeasured confounder in the test-negative design, while the other examines the impact of unmeasured confounder on both vaccination and infection. Furthermore, these approaches can be combined to provide narrower bounds on the true causal odds ratio, and can be further extended to sharpen the bounds by restricting the treatment effect heterogeneity. Finally, we apply the proposed methods to evaluate the effectiveness of COVID-19 vaccines using observational data from test-negative designs.

Summary

We haven't generated a summary for this paper yet.