Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bifurcations and multistability in empirical mutualistic networks (2406.06897v1)

Published 11 Jun 2024 in q-bio.PE and math.DS

Abstract: Individual species may experience diverse outcomes, from prosperity to extinction, in an ecological community subject to external and internal variations. Despite the wealth of theoretical results derived from random matrix ensembles, a theoretical framework still remains to be developed to understand species-level dynamical heterogeneity within a given community, hampering real-world ecosystems' theoretical assessment and management. Here, we consider empirical plant-pollinator mutualistic networks, additionally including all-to-all intragroup competition, where species abundance evolves under a Lotka-Volterra-type equation. Setting the strengths of competition and mutualism to be uniform, we investigate how individual species persist or go extinct under varying the interaction strengths. By employing bifurcation theory in tandem with numerical continuation, we elucidate transcritical bifurcations underlying species extinction and demonstrate that the Hopf bifurcation of unfeasible equilibria and degenerate transcritical bifurcations give rise to multistability, i.e., the coexistence of multiple attracting feasible equilibria. These bifurcations allow us to partition the parameter space into different regimes, each with distinct sets of extinct species, offering insights into how interspecific interactions generate one or multiple extinction scenarios within an ecological network.

Summary

We haven't generated a summary for this paper yet.