Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring the Efficacy of Large Language Models (GPT-4) in Binary Reverse Engineering (2406.06637v1)

Published 9 Jun 2024 in cs.SE and cs.AI

Abstract: This study investigates the capabilities of LLMs, specifically GPT-4, in the context of Binary Reverse Engineering (RE). Employing a structured experimental approach, we analyzed the LLM's performance in interpreting and explaining human-written and decompiled codes. The research encompassed two phases: the first on basic code interpretation and the second on more complex malware analysis. Key findings indicate LLMs' proficiency in general code understanding, with varying effectiveness in detailed technical and security analyses. The study underscores the potential and current limitations of LLMs in reverse engineering, revealing crucial insights for future applications and improvements. Also, we examined our experimental methodologies, such as methods of evaluation and data constraints, which provided us with a technical vision for any future research activity in this field.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Saman Pordanesh (1 paper)
  2. Benjamin Tan (42 papers)