Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamical Mean-Field Theory of Complex Systems on Sparse Directed Networks (2406.06346v1)

Published 10 Jun 2024 in cond-mat.dis-nn, cond-mat.stat-mech, and physics.soc-ph

Abstract: Although real-world complex systems typically interact through sparse and heterogeneous networks, analytic solutions of their dynamics are limited to models with all-to-all interactions. Here, we solve the dynamics of a broad range of nonlinear models of complex systems on sparse directed networks with a random structure. By generalizing dynamical mean-field theory to sparse systems, we derive an exact equation for the path-probability describing the effective dynamics of a single degree of freedom. Our general solution applies to key models in the study of neural networks, ecosystems, epidemic spreading, and synchronization. Using the population dynamics algorithm, we solve the path-probability equation to determine the phase diagram of a seminal neural network model in the sparse regime, showing that this model undergoes a transition from a fixed-point phase to chaos as a function of the network topology.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com