Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parametric kernel low-rank approximations using tensor train decomposition (2406.06344v1)

Published 10 Jun 2024 in math.NA and cs.NA

Abstract: Computing low-rank approximations of kernel matrices is an important problem with many applications in scientific computing and data science. We propose methods to efficiently approximate and store low-rank approximations to kernel matrices that depend on certain hyperparameters. The main idea behind our method is to use multivariate Chebyshev function approximation along with the tensor train decomposition of the coefficient tensor. The computations are in two stages: an offline stage, which dominates the computational cost and is parameter-independent, and an online stage, which is inexpensive and instantiated for specific hyperparameters. A variation of this method addresses the case that the kernel matrix is symmetric and positive semi-definite. The resulting algorithms have linear complexity in terms of the sizes of the kernel matrices. We investigate the efficiency and accuracy of our method on parametric kernel matrices induced by various kernels, such as the Mat\'ern kernel, through various numerical experiments. Our methods have speedups up to $200\times$ in the online time compared to other methods with similar complexity and comparable accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Abraham Khan (1 paper)
  2. Arvind K. Saibaba (48 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.