Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Audio-based Step-count Estimation for Running -- Windowing and Neural Network Baselines (2406.06339v1)

Published 10 Jun 2024 in cs.SD and eess.AS

Abstract: In recent decades, running has become an increasingly popular pastime activity due to its accessibility, ease of practice, and anticipated health benefits. However, the risk of running-related injuries is substantial for runners of different experience levels. Several common forms of injuries result from overuse -- extending beyond the recommended running time and intensity. Recently, audio-based tracking has emerged as yet another modality for monitoring running behaviour and performance, with previous studies largely concentrating on predicting runner fatigue. In this work, we investigate audio-based step count estimation during outdoor running, achieving a mean absolute error of 1.098 in window-based step-count differences and a Pearson correlation coefficient of 0.479 when predicting the number of steps in a 5-second window of audio. Our work thus showcases the feasibility of audio-based monitoring for estimating important physiological variables and lays the foundations for further utilising audio sensors for a more thorough characterisation of runner behaviour.

Summary

We haven't generated a summary for this paper yet.