Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Memory Complexity of Estimating Entropy and Mutual Information (2406.06312v2)

Published 10 Jun 2024 in cs.IT and math.IT

Abstract: We observe an infinite sequence of independent identically distributed random variables $X_1,X_2,\ldots$ drawn from an unknown distribution $p$ over $[n]$, and our goal is to estimate the entropy $H(p)=-\mathbb{E}[\log p(X)]$ within an $\varepsilon$-additive error. To that end, at each time point we are allowed to update a finite-state machine with $S$ states, using a possibly randomized but time-invariant rule, where each state of the machine is assigned an entropy estimate. Our goal is to characterize the minimax memory complexity $S*$ of this problem, which is the minimal number of states for which the estimation task is feasible with probability at least $1-\delta$ asymptotically, uniformly in $p$. Specifically, we show that there exist universal constants $C_1$ and $C_2$ such that $ S* \leq C_1\cdot\frac{n (\log n)4}{\varepsilon2\delta}$ for $\varepsilon$ not too small, and $S* \geq C_2 \cdot \max {n, \frac{\log n}{\varepsilon}}$ for $\varepsilon$ not too large. The upper bound is proved using approximate counting to estimate the logarithm of $p$, and a finite memory bias estimation machine to estimate the expectation operation. The lower bound is proved via a reduction of entropy estimation to uniformity testing. We also apply these results to derive bounds on the memory complexity of mutual information estimation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com