Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Effect of Training Dataset Size on Discriminative and Diffusion-Based Speech Enhancement Systems (2406.06160v2)

Published 10 Jun 2024 in eess.AS

Abstract: The performance of deep neural network-based speech enhancement systems typically increases with the training dataset size. However, studies that investigated the effect of training dataset size on speech enhancement performance did not consider recent approaches, such as diffusion-based generative models. Diffusion models are typically trained with massive datasets for image generation tasks, but whether this is also required for speech enhancement is unknown. Moreover, studies that investigated the effect of training dataset size did not control for the data diversity. It is thus unclear whether the performance improvement was due to the increased dataset size or diversity. Therefore, we systematically investigate the effect of training dataset size on the performance of popular state-of-the-art discriminative and diffusion-based speech enhancement systems in matched conditions. We control for the data diversity by using a fixed set of speech utterances, noise segments and binaural room impulse responses to generate datasets of different sizes. We find that the diffusion-based systems perform the best relative to the discriminative systems in terms of objective metrics with datasets of 10 h or less. However, their objective metrics performance does not improve when increasing the training dataset size as much as the discriminative systems, and they are outperformed by the discriminative systems with datasets of 100 h or more.

Citations (1)

Summary

We haven't generated a summary for this paper yet.