Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stronger, Cheaper and Demonstration-Free Log Parsing with LLMs (2406.06156v2)

Published 10 Jun 2024 in cs.SE

Abstract: Log parsing, the process of converting raw log messages into structured formats, is an important initial step for automated analysis of logs of large-scale software systems. Traditional log parsers often rely on heuristics or handcrafted features, which may not generalize well across diverse log sources or require extensive model tuning. Recently, some log parsers have utilized powerful generative capabilities of LLMs. However, they heavily rely on demonstration examples, resulting in substantial overhead in LLM invocations. To address these issues, we propose LogBatcher, a cost-effective LLM-based log parser that requires no training process or labeled data. To leverage latent characteristics of log data and reduce the overhead, we divide logs into several partitions through clustering. Then we perform a cache matching process to match logs with previously parsed log templates. Finally, we provide LLMs with better prompt context specialized for log parsing by batching a group of logs from each partition. We have conducted experiments on 16 public log datasets and the results show that LogBatcher is effective and efficient for log parsing.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yi Xiao (49 papers)
  2. Van-Hoang Le (19 papers)
  3. Hongyu Zhang (147 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.