Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comments on "Federated Learning with Differential Privacy: Algorithms and Performance Analysis" (2406.05858v1)

Published 9 Jun 2024 in cs.DC, cs.CR, and cs.PF

Abstract: In the paper by Wei et al. ("Federated Learning with Differential Privacy: Algorithms and Performance Analysis"), the convergence performance of the proposed differential privacy algorithm in federated learning (FL), known as Noising before Model Aggregation FL (NbAFL), was studied. However, the presented convergence upper bound of NbAFL (Theorem 2) is incorrect. This comment aims to present the correct form of the convergence upper bound for NbAFL.

Citations (1)

Summary

We haven't generated a summary for this paper yet.