2000 character limit reached
Quasiconformal mappings and the rank of $\tfrac {dDf}{d|Df|}$ for $f\in BV(\mathbb{R}^n; \mathbb{R}^n)$ (2406.05824v1)
Published 9 Jun 2024 in math.CA and math.MG
Abstract: We define a relaxed version $H_f{\textrm{fine}}$ of the distortion number $H_f$ that is used to define quasiconformal mappings. Then we show that for a BV function $f\in BV(\mathbb{R}n;\mathbb{R}n)$, for $|Df|$-a.e. $x\in\mathbb{R}n$ it holds that $H_{f*}{\textrm{fine}}(x)<\infty$ if and only if $\tfrac{dDf}{d|Df|}(x)$ has full rank.