Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Exponential Conic Relaxations for Signomial Geometric Programming (2406.05638v1)

Published 9 Jun 2024 in math.OC

Abstract: Signomial geometric programming (SGP) is a computationally challenging, NP-Hard class of nonconvex nonlinear optimization problems. SGP can be solved iteratively using a sequence of convex relaxations; consequently, the strength of such relaxations is an important factor to this iterative approach. Motivated by recent advances in solving exponential conic programming (ECP) problems, this paper develops a novel convex relaxation for SGP. Unlike existing work on relaxations, the base model in this paper does not assume bounded variables. However, bounded variables or monomial terms can be used to strengthen the relaxation by means of additional valid linear inequalities. We show how to embed the ECP relaxation in an iterative algorithm for SGP; leveraging recent advances in interior point method solvers, our computational experiments demonstrate the practical effectiveness of this approach.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.