Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Inhibition Through Maximally Tense Images (2406.05598v1)

Published 8 Jun 2024 in cs.CV

Abstract: We address the functional role of 'feature inhibition' in vision models; that is, what are the mechanisms by which a neural network ensures images do not express a given feature? We observe that standard interpretability tools in the literature are not immediately suited to the inhibitory case, given the asymmetry introduced by the ReLU activation function. Given this, we propose inhibition be understood through a study of 'maximally tense images' (MTIs), i.e. those images that excite and inhibit a given feature simultaneously. We show how MTIs can be studied with two novel visualization techniques; +/- attribution inversions, which split single images into excitatory and inhibitory components, and the attribution atlas, which provides a global visualization of the various ways images can excite/inhibit a feature. Finally, we explore the difficulties introduced by superposition, as such interfering features induce the same attribution motif as MTIs.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets