Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal control of linear Gaussian quantum systems via quantum learning control (2406.05597v1)

Published 8 Jun 2024 in quant-ph

Abstract: Efficiently controlling linear Gaussian quantum (LGQ) systems is a significant task in both the study of fundamental quantum theory and the development of modern quantum technology. Here, we propose a general quantum-learning-control method for optimally controlling LGQ systems based on the gradient-descent algorithm. Our approach flexibly designs the loss function for diverse tasks by utilizing first- and second-order moments that completely describe the quantum state of LGQ systems. We demonstrate both deep optomechanical cooling and large optomechanical entanglement using this approach. Our approach enables the fast and deep ground-state cooling of a mechanical resonator within a short time, surpassing the limitations of sideband cooling in the continuous-wave driven strong-coupling regime. Furthermore, optomechanical entanglement could be generated remarkably fast and surpass several times the corresponding steady-state entanglement, even when the thermal phonon occupation reaches one hundred. This work will not only broaden the application of quantum learning control, but also open an avenue for optimal control of LGQ systems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com