Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A model of early word acquisition based on realistic-scale audiovisual naming events (2406.05259v1)

Published 7 Jun 2024 in eess.AS, cs.AI, and cs.CL

Abstract: Infants gradually learn to parse continuous speech into words and connect names with objects, yet the mechanisms behind development of early word perception skills remain unknown. We studied the extent to which early words can be acquired through statistical learning from regularities in audiovisual sensory input. We simulated word learning in infants up to 12 months of age in a realistic setting, using a model that solely learns from statistical regularities in unannotated raw speech and pixel-level visual input. Crucially, the quantity of object naming events was carefully designed to match that accessible to infants of comparable ages. Results show that the model effectively learns to recognize words and associate them with corresponding visual objects, with a vocabulary growth rate comparable to that observed in infants. The findings support the viability of general statistical learning for early word perception, demonstrating how learning can operate without assuming any prior linguistic capabilities.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Khazar Khorrami (8 papers)
  2. Okko Räsänen (30 papers)

Summary

We haven't generated a summary for this paper yet.