Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Graph U-Nets for Mesh-Agnostic Spatio-Temporal Flow Prediction (2406.03789v2)

Published 6 Jun 2024 in cs.LG, cs.AI, and physics.flu-dyn

Abstract: This study aims to overcome the limitations of conventional deep-learning approaches based on convolutional neural networks in complex geometries and unstructured meshes by exploring the potential of Graph U-Nets for unsteady flow-field prediction. We present a comprehensive investigation of Graph U-Nets, originally developed for classification tasks, now tailored for mesh-agnostic spatio-temporal forecasting of fluid dynamics. Our focus is on enhancing their performance through systematic hyperparameter tuning and architectural modifications. We propose novel approaches to improve mesh-agnostic spatio-temporal prediction of transient flow fields using Graph U-Nets, enabling accurate prediction on diverse mesh configurations. Key enhancements to the Graph U-Net architecture, including the Gaussian-mixture-model convolutional operator and noise injection approaches, provide increased flexibility in modeling node dynamics: the former reduces prediction error by 95\% compared to conventional convolutional operators, while the latter improves long-term prediction robustness, resulting in an error reduction of 86\%. We demonstrate the effectiveness of these enhancements in both transductive and inductive learning settings, showcasing the adaptability of Graph U-Nets to various flow conditions and mesh structures. This work contributes to the field of reduced-order modeling for computational fluid dynamics by establishing Graph U-Nets as a viable and flexible alternative to convolutional neural networks, capable of accurately and efficiently predicting complex fluid flow phenomena across diverse scenarios.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sunwoong Yang (11 papers)
  2. Ricardo Vinuesa (95 papers)
  3. Namwoo Kang (33 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.