Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximum Likelihood Identification of Linear Models with Integrating Disturbances for Offset-Free Control (2406.03760v2)

Published 6 Jun 2024 in eess.SY, cs.SY, and math.OC

Abstract: This paper addresses the identification of models for offset-free model predictive control (MPC), where LTI models are augmented with (fictitious) uncontrollable integrating modes, called integrating disturbances. The states and disturbances are typically estimated with a Kalman filter. The disturbance estimates effectively provide integral control, so the quality of the disturbance model (and resulting filter) directly influences the control performance. We implement eigenvalue constraints to protect against undesirable filter behavior (unstable or marginally stable modes, high-frequency oscillations). Specifically, we consider the class of linear matrix inequality (LMI) regions for eigenvalue constraints. These LMI regions are open sets by default, so we introduce a barrier function method to create tightened, but closed, eigenvalue constraints. To solve the resulting nonlinear semidefinite program, we approximate it as a nonlinear program using a Cholesky factorization method that exploits known sparsity structures of semidefinite optimization variables and matrix inequalities. The algorithm is applied to real-world data taken from two physical systems: first, a low-cost benchmark temperature microcontroller suitable for classroom laboratories, and second, an industrial-scale chemical reactor at Eastman Chemical's plant in Kingsport, TN.

Summary

We haven't generated a summary for this paper yet.