Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mean-variance portfolio selection in jump-diffusion model under no-shorting constraint: A viscosity solution approach (2406.03709v1)

Published 6 Jun 2024 in math.OC, q-fin.MF, and q-fin.PM

Abstract: This paper concerns a continuous time mean-variance (MV) portfolio selection problem in a jump-diffusion financial model with no-shorting trading constraint. The problem is reduced to two subproblems: solving a stochastic linear-quadratic (LQ) control problem under control constraint, and finding a maximal point of a real function. Based on a two-dimensional fully coupled ordinary differential equation (ODE), we construct an explicit viscosity solution to the Hamilton-Jacobi-BeLLMan equation of the constrained LQ problem. Together with the Meyer-It^o formula and a verification procedure, we obtain the optimal feedback controls of the constrained LQ problem and the original MV problem, which corrects the flawed results in some existing literatures. In addition, closed-form efficient portfolio and efficient frontier are derived. In the end, we present several examples where the two-dimensional ODE is decoupled.

Summary

We haven't generated a summary for this paper yet.