Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

No-Regret Algorithms for Safe Bayesian Optimization with Monotonicity Constraints (2406.03264v1)

Published 5 Jun 2024 in stat.ML and cs.LG

Abstract: We consider the problem of sequentially maximizing an unknown function $f$ over a set of actions of the form $(s,\mathbf{x})$, where the selected actions must satisfy a safety constraint with respect to an unknown safety function $g$. We model $f$ and $g$ as lying in a reproducing kernel Hilbert space (RKHS), which facilitates the use of Gaussian process methods. While existing works for this setting have provided algorithms that are guaranteed to identify a near-optimal safe action, the problem of attaining low cumulative regret has remained largely unexplored, with a key challenge being that expanding the safe region can incur high regret. To address this challenge, we show that if $g$ is monotone with respect to just the single variable $s$ (with no such constraint on $f$), sublinear regret becomes achievable with our proposed algorithm. In addition, we show that a modified version of our algorithm is able to attain sublinear regret (for suitably defined notions of regret) for the task of finding a near-optimal $s$ corresponding to every $\mathbf{x}$, as opposed to only finding the global safe optimum. Our findings are supported with empirical evaluations on various objective and safety functions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Arpan Losalka (4 papers)
  2. Jonathan Scarlett (104 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets