Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Soft GPGPU versus IP cores: Quantifying and Reducing the Performance Gap (2406.03227v1)

Published 5 Jun 2024 in cs.AR

Abstract: eGPU, a recently-reported soft GPGPU for FPGAs, has demonstrated very high clock frequencies (more than 750 MHz) and small footprint. This means that for the first time, commercial soft processors may be competitive for the kind of heavy numerical computations common in FPGA-based digital signal processing. In this paper we take a deep dive into the performance of the eGPU family on FFT computation, in order to quantify the performance gap between state-of-the-art soft processors and commercial IP cores specialized for this task. In the process, we propose two novel architectural features for the eGPU that improve the efficiency of the design by 50\% when executing the FFTs. The end-result is that our modified GPGPU takes only 3 times the performance-area product of a specialized IP core, yet as a programmable processor is able to execute arbitrary software-defined algorithms. Further comparison to Nvidia A100 GPGPUs demonstrates the superior efficiency of eGPU on FFTs of the size studied (256 to 4096-point).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Reddit Logo Streamline Icon: https://streamlinehq.com