Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fokas-Lenells Derivative nonlinear Schrödinger equation its associated soliton surfaces and Gaussian curvature (2406.03203v1)

Published 5 Jun 2024 in nlin.SI

Abstract: One of the most important tasks in mathematics and physics is to connect differential geometry and nonlinear differential equations. In the study of nonlinear optics, integrable nonlinear differential equations such as the nonlinear Schr\"odinger equation (NLSE) and higher-order NLSE (HNLSE) play crucial roles. Because of the medium's balance between dispersion and nonlinearity, all of these systems display soliton solutions. The soliton surfaces, or manifolds, connected to these integrable systems hold significance in numerous areas of mathematics and physics. We examine the use of soliton theory in differential geometry in this paper. We build the two-dimensional soliton surface in the three-dimensional Euclidean space by taking into account the Fokas-Lenells Derivative nonlinear Schr\"odinger equation (also known as the gauged Fokas-Lenells equation). The same is constructed by us using the Sym-Tafel formula. The first and second fundamental forms, surface area, and Gaussian curvature are obtained using a Lax representation of the gauged FLE.

Summary

We haven't generated a summary for this paper yet.