Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computational Limits of Low-Rank Adaptation (LoRA) for Transformer-Based Models (2406.03136v1)

Published 5 Jun 2024 in cs.LG, cs.AI, cs.CC, and stat.ML

Abstract: We study the computational limits of Low-Rank Adaptation (LoRA) update for finetuning transformer-based models using fine-grained complexity theory. Our key observation is that the existence of low-rank decompositions within the gradient computation of LoRA adaptation leads to possible algorithmic speedup. This allows us to (i) identify a phase transition behavior and (ii) prove the existence of nearly linear algorithms by controlling the LoRA update computation term by term, assuming the Strong Exponential Time Hypothesis (SETH). For the former, we identify a sharp transition in the efficiency of all possible rank-$r$ LoRA update algorithms for transformers, based on specific norms resulting from the multiplications of the input sequence $\mathbf{X}$, pretrained weights $\mathbf{W\star}$, and adapter matrices $\alpha \mathbf{B} \mathbf{A} / r$. Specifically, we derive a shared upper bound threshold for such norms and show that efficient (sub-quadratic) approximation algorithms of LoRA exist only below this threshold. For the latter, we prove the existence of nearly linear approximation algorithms for LoRA adaptation by utilizing the hierarchical low-rank structures of LoRA gradients and approximating the gradients with a series of chained low-rank approximations. To showcase our theory, we consider two practical scenarios: partial (e.g., only $\mathbf{W}_V$ and $\mathbf{W}_Q$) and full adaptations (e.g., $\mathbf{W}_Q$, $\mathbf{W}_V$, and $\mathbf{W}_K$) of weights in attention heads.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jerry Yao-Chieh Hu (26 papers)
  2. Maojiang Su (4 papers)
  3. En-Jui Kuo (30 papers)
  4. Zhao Song (253 papers)
  5. Han Liu (340 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.