Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher order approximation of nonlinear SPDEs with additive space-time white noise (2406.03058v2)

Published 5 Jun 2024 in math.PR

Abstract: We consider strong approximations of $1+1$-dimensional stochastic PDEs driven by additive space-time white noise. It has been long proposed (Davie-Gaines '01, Jentzen-Kloeden '08), as well as observed in simulations, that approximation schemes based on samples from the stochastic convolution, rather than from increments of the underlying Wiener processes, should achieve significantly higher convergence rates with respect to the temporal timestep. The present paper proves this. For a large class of nonlinearities, with possibly superlinear growth, a temporal rate of (almost) $1$ is proven, a major improvement on the rate $1/4$ that is known to be optimal for schemes based on Wiener increments. The spatial rate remains (almost) $1/2$ as it is standard in the literature.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com