Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A cost minimization approach to fix the vocabulary size in a tokenizer for an End-to-End ASR system (2406.02563v1)

Published 29 Apr 2024 in eess.AS, cs.CL, and cs.SD

Abstract: Unlike hybrid speech recognition systems where the use of tokens was restricted to phones, biphones or triphones the choice of tokens in the end-to-end ASR systems is derived from the text corpus of the training data. The use of tokenization algorithms like Byte Pair Encoding (BPE) and WordPiece is popular in identifying the tokens that are used in the overall training process of the speech recognition system. Popular toolkits, like ESPNet use a pre-defined vocabulary size (number of tokens) for these tokenization algorithms, but there is no discussion on how vocabulary size was derived. In this paper, we build a cost function, assuming the tokenization process to be a black-box to enable choosing the number of tokens which might most benefit building an end-to-end ASR. We show through experiments on LibriSpeech 100 hour set that the performance of an end-to-end ASR system improves when the number of tokens are chosen carefully.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sunil Kumar Kopparapu (35 papers)
  2. Ashish Panda (5 papers)

Summary

We haven't generated a summary for this paper yet.