Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning dynamical models from stochastic trajectories (2406.02363v1)

Published 4 Jun 2024 in cond-mat.soft, cond-mat.stat-mech, physics.bio-ph, and physics.data-an

Abstract: The dynamics of biological systems, from proteins to cells to organisms, is complex and stochastic. To decipher their physical laws, we need to bridge between experimental observations and theoretical modeling. Thanks to progress in microscopy and tracking, there is today an abundance of experimental trajectories reflecting these dynamical laws. Inferring physical models from noisy and imperfect experimental data, however, is challenging. Because there are no inference methods that are robust and efficient, model reconstruction from experimental trajectories is a bottleneck to data-driven biophysics. In this Thesis, I present a set of tools developed to bridge this gap and permit robust and universal inference of stochastic dynamical models from experimental trajectories. These methods are rooted in an information-theoretical framework that quantifies how much can be inferred from trajectories that are short, partial and noisy. They permit the efficient inference of dynamical models for overdamped and underdamped Langevin systems, as well as the inference of entropy production rates. I finally present early applications of these techniques, as well as future research directions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.