2000 character limit reached
On the number of digons in arrangements of pairwise intersecting circles (2406.02276v1)
Published 4 Jun 2024 in math.CO and cs.CG
Abstract: A long-standing open conjecture of Branko Gr\"unbaum from 1972 states that any simple arrangement of $n$ pairwise intersecting pseudocircles in the plane can have at most $2n-2$ digons. Agarwal et al. proved this conjecture for arrangements of pairwise intersecting pseudocircles in which there is a common point surrounded by all pseudocircles. Recently, Felsner, Roch and Scheucher showed that Gr\"unbaum's conjecture is true for arrangements of pairwise intersecting pseudocircles in which there are three pseudocircles every pair of which create a digon. In this paper we prove this over 50-year-old conjecture of Gr\"unbaum for any simple arrangement of pairwise intersecting circles in the plane.