Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Communication Complexity of Graph Isomorphism, Coloring, and Distance Games (2406.02199v2)

Published 4 Jun 2024 in quant-ph, math-ph, math.CO, and math.MP

Abstract: In quantum information, nonlocal games are particularly useful for differentiating classical, quantum, and non-signalling correlations. An example of differentiation is given by the principle of no-collapse of communication complexity, which is often interpreted as necessary for a feasible physical theory. It is satisfied by quantum correlations but violated by some non-signalling ones. In this work, we investigate this principle in the context of three nonlocal games related to graph theory, starting from the well-known graph isomorphism and graph coloring games, and introducing a new game, the vertex distance game, with a parameter $D\in\mathbb N$, that generalizes the former two to some extent. For these three games, we prove that perfect non-signalling strategies collapse communication complexity under favorable conditions. We also define a refinement of fractional isomorphism of graphs, namely D-fractional isomorphisms, and we show that this characterizes perfect non-signalling strategies for the vertex distance game. Surprisingly, we observe that non-signalling strategies provide a finer distinction for the new game compared to classical and quantum strategies since the parameter D is visible only in the non-signalling setting.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets