Papers
Topics
Authors
Recent
Search
2000 character limit reached

Subspace Quasi-Newton Method with Gradient Approximation

Published 4 Jun 2024 in math.OC | (2406.01965v1)

Abstract: In recent years, various subspace algorithms have been developed to handle large-scale optimization problems. Although existing subspace Newton methods require fewer iterations to converge in practice, the matrix operations and full gradient computation are bottlenecks when dealing with large-scale problems. %In this study, We propose a subspace quasi-Newton method that is restricted to a deterministic-subspace together with a gradient approximation based on random matrix theory. Our method does not require full gradients, let alone Hessian matrices. Yet, it achieves the same order of the worst-case iteration complexities in average for convex and nonconvex cases, compared to existing subspace methods. In numerical experiments, we confirm the superiority of our algorithm in terms of computation time.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.