Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Affine vertex operator superalgebra $L_{\widehat{osp(1|2)}}(\mathcal{l},0)$ at admissible level (2406.01830v1)

Published 3 Jun 2024 in math.QA

Abstract: Let $L_{\widehat{osp(1|2)}}(\mathcal{l},0)$ be the simple affine vertex operator superalgebra with admissible level $\mathcal{l}$. We prove that the category of weak $L_{\widehat{osp(1|2)}}(\mathcal{l},0)$-modules on which the positive part of $\widehat{osp(1|2)}$ acts locally nilpotent is semisimple. Then we prove that $\mathbb{Q}$-graded vertex operator superalgebras $(L_{\widehat{osp(1|2)}}(\mathcal{l},0),\omega_\xi)$ with new Virasoro elements $\omega_\xi$ are rational and the irreducible modules are exactly the admissible modules for $\widehat{osp(1|2)}$, where $0<\xi<1$ is a rational number. Furthermore, we determine the Zhu's algebras $A(L_{\widehat{osp(1|2)}}(\mathcal{l},0))$ and their bimodules $A(L(\mathcal{l},\mathcal{j}))$ for $(L_{\widehat{osp(1|2)}}(\mathcal{l},0),\omega_\xi)$, where $\mathcal{j}$ is the admissible weight. As an application, we calculate the fusion rules among the irreducible ordinary modules of $(L_{\widehat{osp(1|2)}}(\mathcal{l},0),\omega_\xi)$.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com