Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral Flow for the Riemann zeros (2406.01828v3)

Published 3 Jun 2024 in math-ph, cond-mat.dis-nn, hep-th, math.MP, and math.NT

Abstract: Recently, with Mussardo we defined a quantum mechanical problem of a single particle scattering with impurities wherein the quantized energy levels $E_n (\sigma)$ are exactly equal to the zeros of the Riemann $\zeta (s)$ where $\sigma = \Re (s)$ in the limit $\sigma \to 1/2$. The S-matrix is based on the Euler product and is unitary by construction, thus the underlying hamiltonian is hermitian and all eigenvalues must be real. Motivated by the Hilbert-P\'olya idea we study the spectral flows for ${ E_n (\sigma) }$. This leads to a simple criterion for the validity of the Riemann Hypothesis. The spectral flow arguments are simple enough that we present analogous results for the Generalized and Grand Riemann Hypotheses. We also illustrate our results for a counter example where the Riemann Hypothesis is violated since there is no underlying unitary S-matrix due to the lack of an Euler product.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com