Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quasisymmetric expansion of Hall-Littlewood symmetric functions (2406.01166v1)

Published 3 Jun 2024 in math.CO

Abstract: In our previous works we introduced a $q$-deformation of the generating functions for enriched $P$-partitions. We call the evaluation of this generating functions on labelled chains, the $q$-fundamental quasisymmetric functions. These functions interpolate between Gessel's fundamental ($q=0$) and Stembridge's peak ($q=1$) functions, the natural quasisymmetric expansions of Schur and Schur's $Q$-symmetric functions. In this paper, we show that our $q$-fundamental functions provide a quasisymmetric expansion of Hall-Littlewood $S$-symmetric functions with parameter $t=-q$.

Summary

We haven't generated a summary for this paper yet.