Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A class of sequential multi-hypothesis tests (2406.00930v1)

Published 3 Jun 2024 in stat.ME and stat.CO

Abstract: In this paper, we deal with sequential testing of multiple hypotheses. In the general scheme of construction of optimal tests based on the backward induction, we propose a modification which provides a simplified (generally speaking, suboptimal) version of the optimal test, for any particular criterion of optimization. We call this DBC version (the one with Dropped Backward Control) of the optimal test. In particular, for the case of two simple hypotheses, dropping backward control in the Bayesian test produces the classical sequential probability ratio test (SPRT). Similarly, dropping backward control in the modified Kiefer-Weiss solutions produces Lorden's 2-SPRTs . In the case of more than two hypotheses, we obtain in this way new classes of sequential multi-hypothesis tests, and investigate their properties. The efficiency of the DBC-tests is evaluated with respect to the optimal Bayesian multi-hypothesis test and with respect to the matrix sequential probability ratio test (MSPRT) by Armitage. In a multihypothesis variant of the Kiefer-Weiss problem for binomial proportions the performance of the DBC-test is numerically compared with that of the exact solution. In a model of normal observations with a linear trend, the performance of of the DBC-test is numerically compared with that of the MSPRT. Some other numerical examples are presented. In all the cases the proposed tests exhibit a very high efficiency with respect to the optimal tests (more than 99.3\% when sampling from Bernoulli populations) and/or with respect to the MSPRT (even outperforming the latter in some scenarios).

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com