Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterization and thermometry of dissapatively stabilized steady states (2406.00911v2)

Published 3 Jun 2024 in quant-ph

Abstract: In this work we study the properties of dissipatively stabilized steady states of noisy quantum algorithms, exploring the extent to which they can be well approximated as thermal distributions, and proposing methods to extract the effective temperature T. We study an algorithm called the Relaxational Quantum Eigensolver (RQE), which is one of a family of algorithms that attempt to find ground states and balance error in noisy quantum devices. In RQE, we weakly couple a second register of auxiliary "shadow" qubits to the primary system in Trotterized evolution, thus engineering an approximate zero-temperature bath by periodically resetting the auxiliary qubits during the algorithm's runtime. Balancing the infinite temperature bath of random gate error, RQE returns states with an average energy equal to a constant fraction of the ground state. We probe the steady states of this algorithm for a range of base error rates, using several methods for estimating both T and deviations from thermal behavior. In particular, we both confirm that the steady states of these systems are often well-approximated by thermal distributions, and show that the same resources used for cooling can be adopted for thermometry, yielding a fairly reliable measure of the temperature. These methods could be readily implemented in near-term quantum hardware, and for stabilizing and probing Hamiltonians where simulating approximate thermal states is hard for classical computers.

Summary

We haven't generated a summary for this paper yet.