Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximum $k$-Plex Search: An Alternated Reduction-and-Bound Method (2406.00617v1)

Published 2 Jun 2024 in cs.DB and cs.SI

Abstract: $k$-plexes relax cliques by allowing each vertex to disconnect to at most $k$ vertices. Finding a maximum $k$-plex in a graph is a fundamental operator in graph mining and has been receiving significant attention from various domains. The state-of-the-art algorithms all adopt the branch-reduction-and-bound (BRB) framework where a key step, called reduction-and-bound (RB), is used for narrowing down the search space. A common practice of RB in existing works is SeqRB, which sequentially conducts the reduction process followed by the bounding process once at a branch. However, these algorithms suffer from the efficiency issues. In this paper, we propose a new alternated reduction-and-bound method AltRB for conducting RB. AltRB first partitions a branch into two parts and then alternatively and iteratively conducts the reduction process and the bounding process at each part of a branch. With newly-designed reduction rules and bounding methods, AltRB is superior to SeqRB in effectively narrowing down the search space in both theory and practice. Further, to boost the performance of BRB algorithms, we develop efficient and effective pre-processing methods which reduce the size of the input graph and heuristically compute a large $k$-plex as the lower bound. We conduct extensive experiments on 664 real and synthetic graphs. The experimental results show that our proposed algorithm kPEX with AltRB and novel pre-processing techniques runs up to two orders of magnitude faster and solves more instances than state-of-the-art algorithms.

Summary

We haven't generated a summary for this paper yet.